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Objectives: Efavirenz is widely prescribed for HIV-1 infection, and CYP2B6 polymorphisms 516G�T and 983T�C
define efavirenz slow metabolizer genotypes. To identify genetic predictors of higher plasma efavirenz concen-
trations beyond these two common functional alleles, we characterized associations with mid-dosing interval
efavirenz concentrations in 84 HIV-infected adults, all carrying two copies of these major loss-of-function
CYP2B6 alleles.

Methods: Study participants had been randomized to efavirenz-containing regimens in prospective clinical
trials and had available plasma efavirenz assay data. Analyses focused on secondary metabolism pathway poly-
morphisms CYP2A6 -48T�G (rs28399433), UGT2B7 735A�G (rs28365062) and UGT2B7 802T�C (rs7439366).
Exploratory analyses also considered 196 polymorphisms and 8 copy number variants in 41 drug metabolism/
transport genes. Mid-dosing interval efavirenz concentrations at steady-state were obtained ≥8 h but ,19 h
post-dose. Linear regression was used to test for associations between polymorphisms and log-transformed efa-
virenz concentrations.

Results: Increased efavirenz concentrations were associated with CYP2A6 -48T�G in all subjects (P¼3.8×1024)
and in Black subjects (P¼0.027) and White subjects (P¼0.0011) analysed separately; and with UGT2B7 735 G/G
homozygosity in all subjects (P¼0.006) and in Black subjects (P¼0.046) and White subjects (P¼0.062) analysed
separately. In a multivariable model, CYP2A6 -48T�G and UGT2B7 735 G/G homozygosity remained significant
(P,0.05 for each). No additional polymorphisms or copy number variants were significantly associated with efa-
virenz concentrations.

Conclusions: Among individuals with a CYP2B6 slow metabolizer genotype, CYP2A6 and possibly UGT2B7 poly-
morphisms contribute to even higher efavirenz concentrations.

Keywords: pharmacogenomics, pharmacogenetics, pharmacokinetics, antiretroviral therapy, non-nucleoside reverse transcriptase
inhibitor

Introduction
The once-daily non-nucleoside reverse transcriptase inhibitor
efavirenz is one of the most frequently prescribed antiretrovirals
worldwide. It is included among recommended first-line regimens
for HIV-1 infection,1 based on data from many prospective, ran-
domized clinical trials.2 – 7 Efavirenz is metabolized primarily by
cytochrome P450 (CYP) 2B6, with minor metabolism by CYP2A6

and CYP3A4/5,8,9 and direct N-glucuronidation by UDP-glucurono-
syltransferase (UGT) 2B7.10

Three CYP2B6 polymorphisms, 516G�T (rs3745274),11 – 16

983T�C (rs28399499)16 – 19 and 15582C�T (rs4803419), have
consistently been associated with increased plasma efavirenz
exposure.16 The greater frequency of CYP2B6 516G�T with
African ancestry than with European ancestry20 largely explains the
somewhat greater mean plasma efavirenz trough concentrations
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(Cmin) with African ancestry.21 The per allele effect of CYP2B6
983T�C on efavirenz concentrations is somewhat greater than
that of 516G�T,16 although 983T�C is far less frequent and
appears only to be found with African ancestry.20 The per allele
effect of CYP2B6 15582C�T, which is frequent with European
and Asian ancestry,20 is modest compared with 516G�T.16

These three polymorphisms stratify patients into 10 plasma
trough concentration subgroups with medians that span an
�10-fold range.16 The top three strata (i.e. CYP2B6 slow metabol-
izer genotypes) are defined by either 516 T/T homozygosity, dual
516 G/T –983 C/T heterozygosity, or 983 C/C homozygosity.
Because CYP2B6 516T, 983C and 15582T reside on mutually exclu-
sive haplotypes, 15582T is absent in CYP2B6 slow metabolizer
genotypes. These three polymorphisms explained �35% of over-
all interindividual variability in efavirenz estimated Cmin.16

Additional CYP2B6 polymorphisms suggested to affect CYP2B6
activity either have not predicted plasma efavirenz exposure22,23

or have been extremely infrequent.18,22 Polymorphisms in genes
beyond CYP2B6 reported to affect interindividual variability in efa-
virenz pharmacokinetics include CYP2A6,24,25 UGT2B7,25 CYP3A511

and NR1I326,27 (which encodes the constitutive androstane recep-
tor), but findings have seemed to be inconsistent, perhaps a con-
sequence of differences in study design. Kwara et al.25,28 reported
that among 94 HIV-infected Ghanaian patients, increased mid-
dosing interval plasma efavirenz concentrations were associated
with CYP2A6 -48T�G (rs28399433, *9) or *17 carrier status and
UGT2B7*1a status, in addition to CYP2B6 516G�T and 983T�C.
Similarly, di Iulio et al.24 reported that in a predominantly
Caucasian cohort of 169 HIV-infected individuals, CYP2A6
loss-of-function alleles (primarily CYP2A6 -48T�G) had an ef-
fect on efavirenz exposure, but only with concomitant CYP2B6
loss-of-function genotypes. However, in a genome-wide associ-
ation study (GWAS) of efavirenz estimated Cmin values, which
involved 856 ACTG protocol participants of various ancestries,16

no independent associations were found with additional poly-
morphisms in or beyond CYP2B6, including CYP2A6 -48T�G
(P¼0.82). Similarly, a recent report by Sarfo et al.29 indicated that
among 473 HIV-infected Ghanaians, CYP2A6 -48T�G was asso-
ciated with mid-dose plasma efavirenz concentrations on univari-
ate analysis only (P¼0.002), but not after controlling for 516G�T
and 983T�C (P¼0.6), suggesting that the CYP2A6 -48T�G asso-
ciation was not independent of CYP2B6 polymorphisms.

There were several limitations to the above GWAS. The method
used to estimate efavirenz Cmin did not allow differences between
some concentrations within the top concentration strata to be
discriminated; subgroup analyses were not performed solely
among subjects with a CYP2B6 slow metabolizer genotype; and
previously implicated UGT2B7 polymorphisms were not geno-
typed.16 To assess whether higher plasma efavirenz concentra-
tions are affected by polymorphisms in genes relevant to drug
absorption, distribution, metabolism and elimination (ADME)
beyond CYP2B6, the present study focused on ACTG protocol par-
ticipants with a CYP2B6 slow metabolizer genotype. Plasma efa-
virenz concentrations in this group should be exquisitely
sensitive to loss-of-function polymorphisms in minor pathways
of efavirenz metabolism, as previously suggested.24 We only con-
sidered efavirenz concentrations from 8 to 19 h post-dose, and
performed targeted genotyping of UGT2B7 polymorphisms as
well as an additional 194 polymorphisms and 8 gene copy num-
ber variants in 40 ADME genes.

Materials and methods

Study participants
Most individuals in these analyses were also included in the previously
reported GWAS,16 which involved treatment-naive individuals who were
randomized to efavirenz-containing regimens in ACTG studies 384,30

A5095 (including its neurologic substudy A5097s)3,31 and A5202,7 with
DNA obtained under protocol A512832 and with available plasma efavir-
enz assay data. We limited the present analyses to individuals with a
CYP2B6 slow metabolizer genotype (516TT, 516T/983C or 983CC).
Self-identified race/ethnicity categories ‘white, non-Hispanic’, ‘black,
non-Hispanic’ and ‘Hispanic’ are hereafter referred to as White, Black
and Hispanic, respectively. This study complied with the Helsinki
Declaration, was approved by institutional review boards for each site
and subjects gave written informed consent.

Genotyping

Genotypes for CYP2B6 516G�T, 983T�C and CYP2A6 -48T�G were avail-
able from a custom-designed MassARRAYw iPLEX Gold assay (Sequenom
Inc.), as previously described,16 and confirmed by genotyping with the
iPLEX ADME PGx panel (Sequenom Inc.). Genotypes of five UGT2B7 poly-
morphisms, including 735A�G (rs28365062), 801A�T (rs7438284),
802T�C (rs7439366), 870+115G�A (rs7441750) and 870+148G�A
(rs7441774) were determined using genomic PCR amplification and direct
sequencing as described previously,28 with minor modifications using
Platinumw PCR SuperMix, High Fidelity (Life Technologies Inc.). The PCR
reactions were denatured initially at 948C for 2 min, then 35 cycles of
948C for 30 s, 558C for 30 s and 688C for 1 min, followed by 688C for
5 min. Four of the five UGT2B7 polymorphisms (rs7438284, rs7439366,
rs7441750, rs7441774) were in complete linkage disequilibrium in our
subjects, so analyses only included 735A�G (rs28365062) and 802T�C
(rs7439366). These polymorphisms were chosen for analysis since they
discriminate the three most common UGT2B7 alleles identified to date,
including UGT2B7*1a (reference), UGT2B7*1c (735A�G) and UGT2B7*2
(802T�C).28 Furthermore, 802T�C is non-synonymous, causing a histi-
dine to tyrosine transition at codon 268, while 735A�G was associated
with altered clearance and glucuronidation of zidovudine, a specific
UGT2B7 substrate.33 Two NR1I3 polymorphisms previously associated
with efavirenz plasma concentrations, rs230742426 and rs3003596,27

were genotyped by TaqManTM assay with ABI PRISM 7900 HT Sequence
Detection System (Applied Biosystems Inc., Foster City, CA). From iPLEX
ADME PGx, we only included data from specimens with .95% genotyping
efficiency and polymorphisms with .95% genotyping efficiency.
Laboratory personnel with no knowledge of the clinical data performed
the genotyping. Within each race/ethnicity group, each iPLEX ADME PGx
polymorphism was in Hardy–Weinberg equilibrium after Bonferroni cor-
rection for multiple comparisons. All assays were run in duplicate.

Plasma efavirenz concentrations
Plasma efavirenz concentrations were assayed by HPLC at treatment
weeks 1, 4, 12 and 24, as described elsewhere.34 Sampling times were
not pre-specified, and time of prior dose was by self-report. We only
included mid-dosing interval efavirenz concentrations obtained ≥8 h but
,19 h post-dose. Efavirenz is typically taken at bedtime to minimize CNS
side effects, and mid-dose concentrations are more convenient for thera-
peutic drug monitoring than AUC. At steady-state, efavirenz mid-dose
concentrations (�12 h post-dose) very strongly correlate with AUC
values.35 We also only included subjects with at least two efavirenz deter-
minations within this window, and with relatively consistent values. For
subjects with only two such determinations, subjects with a difference
between log10 efavirenz concentrations ≥0.3 mg/mL were excluded. For
subjects with more than two determinations, subjects with a standard

Haas et al.

2176

D
ow

nloaded from
 https://academ

ic.oup.com
/jac/article/69/8/2175/2911203 by guest on 10 April 2024



deviation of log10 efavirenz concentrations ≥0.2 mg/mL were excluded.
These standard deviation cut-offs, chosen based on visual inspection of
frequency distribution plots, only excluded a few outlier subjects with
extreme inter-assay variability.

Statistical analysis
For each subject, the mean of log10-transformed efavirenz concentrations
was used in analyses. Linear regression was used to test for association
between polymorphisms and efavirenz concentrations. Primary analyses
used additive genetic models. Exploratory post hoc analyses also consid-
ered recessive models. For CYP2A6 -48T�G, UGT2B7 735A�G, 802T�C
and composite CYP2B6 516/983 genotype, nominal two-way P values
,0.05 were considered significant. For other polymorphisms, P values
were Bonferroni corrected for multiple comparisons. Statistical analyses
were performed with PLINK software v1.0736 and with STATA software
v13.0.37

Results

Study subjects

These analyses included 84 subjects, of which 73 (86.9%) were
male, 44 (52.4%) Black, 24 (28.6%) White and 16 (19.1%)
Hispanic. Mean age (+SD) was 38.3+9.2 years. The mean of
log10 plasma efavirenz concentrations (of each subject’s mean
value) was 0.79 log10+0.19 log10 mg/mL. On a linear scale,
median was 5.8 mg/mL, minimum 2.4 mg/mL, IQR 4.3–8.5 mg/
mL and maximum 17.4 mg/mL. Mean time post-dose was
12.8+2.0 h (based on within-subject means).

Genetic associations with mid-dose efavirenz
concentrations

All 84 subjects had a CYP2B6 slow metabolizer genotype, includ-
ing 71 (84.5%) homozygous for CYP2B6 516TT, 12 (14.3%) hetero-
zygous for CYP2B6 516GT with 983TC and 1 (1.2%) homozygous
for CYP2B6 983CC. There was a trend toward association between
increasing CYP2B6 983C allele copy number and higher efavirenz
concentrations in all subjects (P¼0.12). To address possible con-
founding by genetic substructure, we analysed each race/ethni-
city group separately. This relationship was also apparent in
Black subjects analysed separately. The one Hispanic subject
with a 983C allele self-identified as ‘Black, Hispanic’. No White
subject had a 983C allele (Figure 1).

Among all subjects, CYP2A6 -48T�G was significantly asso-
ciated with increased efavirenz concentrations by univariate ana-
lysis (P¼3.8×1024). This association was also apparent in Black
subjects (P¼0.027) and White subjects (P¼0.0011) analysed sep-
arately, but not in Hispanic subjects (P¼0.70), perhaps due to
small sample size (Figure 2). Of note, the only subject with appar-
ent homozygosity for CYP2A6 -48 G/G was also heterozygous for
deletion of the CYP2A6 gene, and so this subject had only one
CYP2A6 -48G allele (see later regarding iPLEX ADME PGx geno-
types). Among all subjects, UGT2B7 735A�G was not associated
with increased efavirenz concentrations by univariate analysis
(P¼0.32) or in Black, White and Hispanic subjects analysed separ-
ately (P .0.1 for each). However, among all subjects, using a
recessive genetic model, UGT2B7 735 G/G homozygosity was
associated with higher efavirenz concentrations than the com-
bined A/A and A/G genotypes (P¼0.0063), although only three
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Figure 1. Plasma efavirenz (EFV) concentrations by CYP2B6 516/983 slow metabolizer genotype subgroup. On each graph, each marker represents a
different subject, each with a CYP2B6 slow metabolizer genotype. Panels represent all subjects (top left) and self-identified Black subjects (top right),
White subjects (bottom left) and Hispanic subjects (bottom right). Each marker represents the median of at least two log10-transformed efavirenz
determinations on plasma samples obtained 8–19 h post-dose. Horizontal bars are medians and IQRs. Median values are shown below the markers.
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subjects were homozygous for G/G. This association appeared to
be consistent in Black subjects (P¼0.046) and White subjects
(P¼0.062) analysed separately (Figure 3). There was no signifi-
cant association between either UGT2B7 802T�C, NR1I3
rs2307424 or NR1I3 rs3003596 and efavirenz concentrations by
univariate analysis in all subjects, or in Black, White or Hispanic
subjects analysed separately (P.0.3 for each analysis; Figures
S1 to S3, available as Supplementary data at JAC Online).

Multivariable models were used to test for independent asso-
ciations. Among all 84 subjects, in additive genetic models that
controlled for CYP2B6 slow metabolizer subgroup (516TT, 516T/
983C and 983CC), efavirenz concentrations remained significantly
associated with CYP2A6 -48T�G (P¼0.0010) but not with
UGT2B7 735A�G (P¼0.29), UGT2B7 802T�C (P¼0.89), NR1I3
rs2307424 (P¼0.49) or rs3003596 (P¼0.43); in a recessive gen-
etic model, UGT2B7 735 G/G homozygosity was associated with
efavirenz concentrations (P¼0.0085). In a multivariable model
that controlled for both CYP2B6 slow metabolizer subgroup and
CYP2A6 -48T�G genotype, CYP2A6 -48T�G (P¼0.0036) and
UGT2B7 735A�G (P¼0.025, recessive model), but not CYP2B6
516/983 subgroup (P¼0.33), were significantly associated with
efavirenz concentrations.

In separate univariate linear regression models, CYP2A6
-48T�G explained 15% of interindividual variance in log10

plasma efavirenz concentrations, UGT2B7 735 (G/G homozygos-
ity) explained 9%, CYP2B6 983T�C explained 3% and time post-
dose explained 2%. A multivariable model that included CYP2A6
-48T�G and UGT2B7 735 (G/G homozygosity) explained 21% of
interindividual variance in log10 plasma efavirenz concentrations.

Inclusion of CYP2B6 983T�C only increased this to 22%, and time
post-dose only to 24%. The final model, which included CYP2A6
-48T�G, UGT2B7 735 G/G homozygosity and CYP2B6 983T�C,
is shown in Table 1.

Associations with additional polymorphisms were explored
based on iPLEX ADME PGx genotypes, which were available for
68 subjects (21 White, 39 Black and 8 Hispanic) representing
194 loci in 40 genes (of which 103 were polymorphic and 74
had minor allele frequencies .5%). This platform also assayed
for copy number variants of CYP2A6, CYP2B6, CYP2D6, GSTM1,
GSTT1, GSTT2B, SULT1A1 and UGT2B17. Information regarding
iPLEX ADME PGx genes, polymorphisms and minor allele frequen-
cies are shown in Table S1 (available as Supplementary data
at JAC Online). In univariate analyses with correction for multiple
comparisons, only CYP2A6 -48T�G in the iPLEX ADME PGx
panel was significantly associated with plasma efavirenz concen-
trations (P¼5.8×1024). This association was also apparent in
Whites (P¼0.0063) and Blacks (P¼0.024) analysed separately.
Considering nominal significance (without correcting for multiple
comparisons), six polymorphisms in CYP2C9, CYP2C19, CYP3A5,
GSTM1 and SULT1A1 had P values between 0.02 and 0.05, but
associations were not consistent in White and Black subjects ana-
lysed separately. These included the CYP3A5 loss-of-function
polymorphism rs776746 (CYP3A5*3), which had nominal signifi-
cance for association in all subjects (P¼0.048) but not in White
subjects (P¼0.54) or Black subjects (P¼0.80) analysed separ-
ately. In a multivariable analysis that controlled for CYP2A6
-48T�G, the lowest nominal P value was in GSTM1 (P¼0.040).
None was significant after correcting for multiple comparisons.
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Figure 2. Plasma efavirenz (EFV) concentrations by CYP2A6 -48T�G genotype. On each graph, each marker represents a different subject. Panels
represent all subjects (top left) and self-identified Black subjects (top right), White subjects (bottom left) and Hispanic subjects (bottom right). All
have a CYP2B6 slow metabolizer genotype (i.e. 516TT, 516T/983C or 983CC). Genotypes for CYP2A6 -48T�G (rs28399433) are shown. Each marker
represents the median of at least two log10-transformed efavirenz determinations on plasma samples obtained 8–19 h post-dose. Horizontal bars
are medians and IQRs. Median values are shown below the markers.
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Association analysis results for iPLEX ADME PGx genotypes and
gene copy number variants are shown in Tables S2 to S6 (available
as Supplementary data at JAC Online). Frequencies of gene copy
number variants are shown in Table S7.

For three subjects heterozygous for a CYP2A6 gene deletion
(one with a CYP2A6 -48G allele, as noted above), there was no sig-
nificant association with plasma efavirenz concentrations. (This
gene deletion is also known as CYP2A6*4).38 The two individuals
with a single CYP2A6 -48T allele gene copy did not have particu-
larly high plasma efavirenz concentrations (4.4 mg/mL and
9.3 mg/mL). Similarly, two subjects heterozygous for CYP2A6
rs28399454 A/G (also known as CYP2A6*17)39 did not have par-
ticularly high plasma efavirenz concentrations (4.0 mg/mL and
5.3 mg/mL). A Q –Q plot of observed versus expected – log10 P
values showed that only the CYP2A6 -48T�G P value was sub-
stantially less than expected by chance (Figure 4).

Sensitivity analyses assessed the effect of censoring single
plasma efavirenz concentration values from selected analyses.
With removal of the one subject with a single CYP2A6 -48G allele,
the univariate association with CYP2A6 -48T�G remained signifi-
cant (P¼9.4×1024). With removal of the one subject with the
highest efavirenz value (heterozygous for CYP2A6 -48 G/T, homo-
zygous for UGT2B7 735 G/G), the association with CYP2A6 -48T�G
again remained significant (P¼0.0014), but the association with
UGT2B7 735A�G did not (recessive model, P¼0.11).

Discussion
Efavirenz is one of the most frequently prescribed antiretrovirals
worldwide. The present study shows that, among individuals
with already increased efavirenz concentrations due to a CYP2B6
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Figure 3. Plasma efavirenz (EFV) concentrations by UGT2B7 735A�G genotype. On each graph, each marker represents a different subject. Panels
represent all subjects (top left) and self-identified Black subjects (top right), White subjects (bottom left) and Hispanic subjects (bottom right). All
have a CYP2B6 slow metabolizer genotype (i.e. 516TT, 516T/983C or 983CC). Each marker represents the median of at least two log10-transformed
efavirenz determinations on plasma samples obtained 8–19 h post-dose. Genotypes for UGT2B7 735A�G (rs28365062) are shown. Horizontal bars
are medians and IQRs. Median values are shown below the markers.

Table 1. Multivariate linear regression model for association between genetic polymorphisms and log10 plasma efavirenz concentrations

Variant Coefficient 95% CI Standard error t P value

CYP2A6 -48T�G 0.135 0.045, 0.224 0.045 3.00 0.004
UGT2B7 735 G/Ga 0.232 0.030, 0.434 0.102 2.29 0.025
CYP2B6 983T�C 0.046 20.047, 0.140 0.047 0.99 0.326

aUGT2B7 735A�G was analysed for recessive effect (i.e. G/G versus combined A/A and A/G).
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slow metabolizer genotype, CYP2A6 -48T�G is associated with
even greater increases in plasma efavirenz concentrations. This
polymorphism, which defines the CYP2A6*9 haplotype, disrupts
the TATA box and is associated with reduced CYP2A6 expres-
sion.40,41 This association was seen in all subjects and in Black
subjects and White subjects analysed separately. In multivariable
analyses, the association with CYP2A6 -48T�G was independent
of CYP2B6 slow metabolizer genotype subgroup (i.e. 516TT, 516T/
983C and 983CC). The validity of this association is further sup-
ported by the Q –Q plot, which clearly shows that CYP2A6
-48T�G stands out among the many ADME polymorphisms gen-
otyped. A possible association between UGT2B7 735A�G and
higher plasma efavirenz concentrations was only seen with 735
G/G homozygosity, which was independent of both CYP2A6
-48T�G and CYP2B6 slow metabolizer genotype subgroup in mul-
tivariable analyses. However, loss of UGT2B7 735A�G signifi-
cance in a sensitivity analysis that censored a single subject
shows the tenuousness of this association. In addition, increasing
number of CYP2B6 983C alleles tended toward association with
higher plasma efavirenz concentrations, consistent with previous
reports.16

The present analyses only included individuals with a CYP2B6
slow metabolizer genotype, because only in the setting of mark-
edly reduced CYP2B6 activity are minor metabolism pathway
effects most apparent, as previously suggested.24 Although
UGT2B7 can directly N-glucuronidate efavirenz in vitro,10 our find-
ing that an association with UGT2B7 735A�G was only seen with
G/G homozygosity suggests that the effect (if any) of this poly-
morphism is weak. This is consistent with data from a study of
10 HIV-negative healthy volunteers (eight Caucasians and two
African Americans), which suggested that the contribution of
UGT2B7 to efavirenz metabolism in vivo is minimal.42 However,
there were likely no CYP2B6 slow metabolizer genotypes in the lat-
ter study (although genotyping was not done), and the contribu-
tion of UGT2B7 might be more substantial in such individuals.

We found no additional ADME polymorphisms in or beyond
CYP2B6, CYP2A6 and UGT2B7 associated with plasma efavirenz
concentrations. This includes CYP3A5*3 (rs776746), which mark-
edly reduces CYP3A5 expression and was very frequent in our
study subjects. We conclude that CYP3A5 either does not contrib-
ute substantially to efavirenz metabolism in vivo or that a com-
pensatory increase in CYP3A4 activity (or of some other
enzyme) in these subjects offsets the decreased CYP3A5 activity.

We also did not replicate previously reported associations with
NR1I3 polymorphisms.26,27 This may reflect the fact that we
only studied individuals with a CYP2B6 slow metabolizer genotype,
in whom gene expression may be less influenced by nuclear
receptor activity. We cannot explain the lack of association
between heterozygosity for either CYP2A6*4 or CYP2A6*17 and
plasma efavirenz concentrations, but this may reflect low statis-
tical power, with only five subjects carrying these alleles. It is
conceivable that the association between CYP2A6 -48T�G and
decreased plasma efavirenz concentrations is somehow
mediated through a further reduction in CYP2B6 (rather than
CYP2A6) expression and/or activity among individuals with a
CYP2B6 slow metabolizer genotype, as this polymorphism is
�140 kb upstream of CYP2B6 on chromosome 19. This would be
consistent with the lack of association with CYP2A6*4 and
CYP2A6*17 in the present study, but would not be consistent
with the lack of association between CYP2A6 -48T�G and plasma
efavirenz concentrations in subjects with a CYP2B6 extensive or
intermediate metabolizer genotype in the previous GWAS that
involved 856 subjects.16

This study has potential implications for efavirenz side effects.
Higher plasma efavirenz concentrations have been associated
with CNS side effects in some13,29,43,44 but not all studies.45 – 47

In ACTG protocol A5097s (a double-blinded, placebo-controlled
study specifically designed to assess efavirenz CNS symptoms),
efavirenz was significantly associated with increased CNS symp-
toms compared with placebo within the first week of treatment
initiation but not at weeks 4, 12 and 24.31 Changes in efavirenz-
associated neurological symptoms within the first week of treat-
ment initiation were correlated with week 1 plasma efavirenz
plasma concentrations31 and with CYP2B6 516G�T genotype.11

A larger ACTG analysis suggested an association between
increased CNS side effects and a CYP2B6 slow metabolizer geno-
type in Whites but not in Blacks or Hispanics.19 A subsequent Swiss
HIV Cohort Study analysis involving a largely Caucasian popula-
tion suggested increased risk of efavirenz discontinuation in 13
individuals with various combinations of CYP2B6, CYP2A6 and
CYP3A4 polymorphisms.48

The present study also has potential implications for efavirenz
dosing-reduction strategies, as has been proposed to reduce side
effects and/or cost.49,50 The present study suggests that among
individuals with a CYP2B6 slow metabolizer genotype and con-
comitant CYP2A6 -48T�G (and possibly UGT2B7 735 G/G homo-
zygosity), marked dose reduction will still maintain ample plasma
efavirenz exposure to control HIV-1 replication.

This study had limitations. We only studied individuals with
a CYP2B6 slow metabolizer genotype. However, our previous
GWAS showed no significant association between CYP2A6
-48T�G and plasma efavirenz exposure among ACTG protocol
participants in multivariable analyses that controlled for
516G�T, 983T�C and 15582C�T.16 Thus, CYP2A6 -48T�G,
and possibly UGT2B7 735A�G, are only relevant to efavirenz
exposure in individuals with markedly reduced CYP2B6 activity,
as previously suggested.24 Also, because this study included few
Hispanic subjects and no Asian subjects, we cannot generalize
these findings to other populations.

In summary, knowledge of CYP2A6 -48T�G genotype
improves stratification of plasma efavirenz concentrations in indi-
viduals with a CYP2B6 slow metabolizer genotype. Stratification
may also be improved by UGT2B7 genotype, although this
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association was less robust. These findings support the import-
ance of minor metabolism pathways of efavirenz metabolism in
CYP2B6 slow metabolizers, and suggest that individuals with
CYP2A6 -48T�G, and possibly UGT2B7 735 G/G, are at increased
risk for considerably higher plasma efavirenz exposure.
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