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Background: Drug dosing for septic patients with acute renal failure receiving continuous renal
replacement therapy (CRRT) is complicated, and failure to correctly dose may result in either drug tox-
icity or treatment failure and development of antibiotic resistance. The aim of this study was to estab-
lish an ideal dataset that needs to be reported when presenting pharmacokinetic data for these
patients and review current literature for completeness of this dataset.

Methods: An ideal dataset was established of the parameters that should be reported when calculating
a drug dosing regimen from first principles. A Medline search was performed of relevant literature
producing 64 citations from which completeness of the specified criteria was examined.

Results: None of the studies analysed presented the full dataset that we established as necessary.
Of concern, basic pharmacokinetic parameters such as volume of distribution (Vd) and clearance (CL)
were specified in only 79% and 81% of studies, respectively.

Conclusions: A large proportion of current studies do not report key information necessary to devise a
rational dosing regimen for patients with acute renal failure receiving CRRT, and we hope this dataset
will be a useful guide when reporting future pharmacokinetic data.
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Introduction

Sepsis and acute renal failure (ARF) are two pathological
entities that commonly co-exist in patients admitted to intensive
care.1,2 Early, appropriate antibiotic therapy and source control
while enhancing cellular recovery and controlling metabolic
complications associated with uraemia remain the most impor-
tant aspects of clinical treatment.3 – 7

However, antibiotic dosing in septic patients with ARF can
be complicated and may result in either underdosing, causing
treatment failure and antibiotic resistance, or overdosing result-
ing in drug toxicity.8 This is further compounded by the use of
renal replacement therapy (RRT) to maintain homeostasis until
renal function has sufficiently recovered, which can result in sig-
nificant non-renal clearance of antibiotic.9

Since the late 1970s the use of continuous renal replacement
therapy (CRRT) has become established in many intensive care

units (ICUs) as the preferred modality of RRT. CRRT avoids
rapid fluid and electrolyte shifts in haemodynamically unstable
patients and gives better control of patient fluid balance than tra-
ditional thrice-weekly intermittent haemodialysis (IHD). CRRT
is usually performed through a venous catheter situated in a
large (usually a femoral or internal jugular) vein, either as con-
tinuous veno-venous haemofiltration (CVVH), haemodialysis
(CVVHD) or a combination of the two: haemodiafiltration
(CVVHDF).

CVVH uses a predominantly hydrostatic pressure gradient to
pump solute across a filter membrane to achieve clearance.
Replacement fluid can be added to the circuit either before
blood reaches the membrane (pre-dilution) or after passage over
the filter membrane (post-dilution). In contrast, CVVHD uses
diffusion across a membrane to effect clearance of solute. This
is achieved by generating a continuous concentration gradient
using counter-current flow of plasma and dialysate fluid,
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between which equilibration occurs. CVVHDF uses a
combination of the two above techniques, convection and diffu-
sion to clear solute.

In order to devise a rational drug dosing regimen it is necess-
ary to know the volume of distribution (Vd) and the clearance
(CL) of the drug concerned. In the case of patients with ARF
being treated with CRRT, clearance will depend on a combi-
nation of CRRT clearance, residual renal function and non-renal
clearance. Both the volume of distribution and the non-renal
clearance may be changed by ARF and critical illness.10 – 14 The
problem is further exacerbated by considerable variability in the
mode and dose of CRRT. Thus, to be useful to clinicians,
studies of antibiotic pharmacokinetics in critically ill patients
with ARF should report several parameters in addition to the
standard pharmacokinetic dataset. Without these parameters,
interpretation of studies and their use in deriving a dosing
regimen is limited.

The aim of this review therefore was to: (i) establish the ideal
dataset that needs to be presented to allow for adequate anti-
biotic dosage regimen calculation on CRRT; (ii) examine recent
publications on antibiotic dosing in patients with ARF receiving
CRRT and to establish whether this dataset is complete; and (iii)
examine whether sufficient detail on patient case-mix was given
to assess applicability of the data to other critically ill patients
receiving CRRT for ARF.

Methods

Establishing the ideal dataset required

A drug dosing regimen can be calculated from first principles: Vd

will determine initial or loading dose and total clearance (CLtot)
will dictate dosing interval. CLtot is determined by both CRRT
(CLCRRT) and non-CRRT (CLnon-CRRT) clearance (mainly residual
renal and hepatic clearance). Thus, depending on whether antibiotic
kill characteristics are time or concentration dependent, a specific

serum concentration–time profile can be targeted (Figure 1).
The mode and dose of CRRT in critically ill patients with ARF

is not only highly variable but can have significant effects on
CLCRRT, and therefore specific data need to be quoted. Table 1
shows equations for calculating CRRT clearance depending on the

modality of CRRT used. Passage of drug across a filter membrane is
essentially independent of drug molecular weight as the pore size of
modern membranes vastly exceeds the size of most commonly used
antimicrobials. However, protein binding, membrane type, charge
and surface area may play a significant role in limiting drug passage

across the haemofilter. This can be expressed, depending on whether
CVVH or CVVHD is used, as either a sieving coefficient (Sc) or a
saturation coefficient (Sd), calculated as:

Sc ¼
½Drug�ultrafiltrate

½Drug� plasma

Sd ¼
½Drug�dialysate

½Drug� plasma

When using CVVH, the method of dilution needs to be specified
as plasma entering the haemofilter in predilution mode will be
diluted by replacement fluid, and a correction factor (CF) needs to
be used to calculate clearance (CF¼Qb/QbþQrep) (Table 1). This
would require further mention of blood flow rates (Qb) and fluid

replacement rates (Qrep) in addition to basic CVVH data such as Sc

and ultrafiltrate rate (Qf ). Non-CRRT clearance is predominantly

determined by residual renal and hepatic clearance, which should
therefore be mentioned in some form. Finally, to assess whether the
derived dataset is applicable to the patient population one wants to

Loading dose = Desired concentration × Vd

Calculate CRRT clearance (CLCRRT) (Table 1) 

Total clearance (CLtot) calculated by adding CLCRRT + CLnon-CRRT

Pharmacokinetic
target?

Calculate
elimination rate = 
concentration × 

CLtot

Maintenance
infusion rate = 
elimination rate

Calculate half life = 
ln 2 × Vd/CLtot 

Calculate time to 
reach trough 
concentration

Repeat loading dose 
at calculated time 

Calculate target 
mean concentration
= target AUC24/24

Calculate dosing 
interval = dose/(Cp 

× CLtot/f)

Repeat loading dose 
at calculated dosing 

interval

Cmax:MIC & 
AUC24:MIC

Time above threshold 
concentration

Cmax:MIC ratio

Figure 1. Calculation of antibacterial doses based on first principles:

non-CRRT clearance is the sum of non-renal clearance plus residual renal

clearance.

Table 1. Equations for calculating CRRT clearance from first

principles

Mode of CRRT Calculation of CRRT clearance

CVVH (post-dilution) CLCVVH (post)¼Qf�Sc

CVVH (pre-dilution) CLCVVH (pre)¼Qf�Sc�Qb/(QbþQrep)

CVVHD CLCVVHD¼Qd�Sd

CVVHDF CLCVVHDF¼ (QfþQd)�Sd

CLCVVH (post), clearance from continuous veno-venous haemofiltration
using post filter haemodilution; Qf, ultrafiltrate rate; Sc, sieving coefficient;
CLCVVH (pre), clearance from continuous veno-venous haemofiltration using
pre-filter haemodilution; Qb, blood flow rate; Qrep, predilution replacement
rate; CLCVVHD, dialysate flow rate; Sd, saturation coefficient; CLCVVHDF,
clearance from continuous veno-venous haemodiafiltration.
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dose, a comparison of patient demographics such as age, weight and
severity of illness would be helpful.

Based on the principles discussed above, ideal (Figure 2) and
minimum datasets were determined by three of the authors.

Disagreements were resolved by discussion. The minimum dataset
consisted of: antibiotic assayed, dose recommendation, patient age,
weight, markers of residual renal function and hepatic impairment,
Vd, clearance (total, CRRT and non-CRRT) and (depending on
modality of CRRT used), method of dilution, ultrafiltrate, blood and

dialysate flow rates.

Literature review

We searched the Medline database from January 1986 through to

February 2008 for literature with the medical subject headings ‘acute
renal failure’, ‘pharmacokinetics’, ‘clearance’, ‘dosage’, ‘h(a)emofil-
tration’, ‘h(a)emodialysis’, ‘h(a)emodiafiltration’, ‘continuous renal
replacement therapy’, ‘antibiotics’, ‘intensive care’ and ‘critically
ill’. All searches were limited to studies of human subjects and

antimicrobials commonly used in intensive care. The searches
produced a total of 64 citations, 60 related to antibacterials15 – 73 and
four related to antifungals89 – 92 (see Table S1; available as
Supplementary data at JAC Online http://jac.oxfordjournals.org/).

Three investigators reviewed potentially relevant papers for the
specified data and any disagreement was resolved by discussion.

Results

The percentage of studies providing the ideal dataset we speci-
fied is shown in Figure 3. Of note, none of the studies included
the full set of parameters; 29% of studies provided the minimum
dataset.

Drug data

All studies specified the antibiotic assayed and 7% of
studies specified a target concentration in terms of MIC. Dose
recommendation or modification was suggested in 73% of
studies.

Patient demographics

All studies specified the number of patients receiving antibiotics
and CRRT. Age and patient weight were given in 99% and 69%

Drug data
Antibiotic
assayed

Specified target concentration Dose recommendation 

Patient demographics
Age Weight Severity 

of
illness

Number of 
patients in 

study

Residual renal 
function

Hepatic
function

Basic pharmacokinetics 

Volume of distribution 
(Vd)

Total, CRRT and non-
CRRT clearance 

Protein binding/serum 
albumin

CRRT clearance 

Membrane type/surface area 

CVVH CVVHD CVVHDF 

Post-dilutionPre-dilution

Sc

Ultrafiltration
rate (Qf)

Blood flow 
(Qd)

Haematocrit
(HCT)

Predilution
replacement
rate (Qrep)

Sc

Ultrafiltration
rate (Qf)

Sd

Dialysate rate 
(Qd)

Sc/Sd

Ultrafiltration rate (Qf)

and

Dialysate rate (Qd)

or

Effluent rate (Qf + Qd)

Figure 2. Pharmacokinetic parameters required for antibiotic dosage modification in patients receiving CRRT.
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of studies, respectively. Severity of patient’s illness was speci-
fied in 80% of studies. Some measure of residual renal function
was specified in 75% of studies, and a note of hepatic impair-
ment or function, either qualitative or quantitative, was noted in
33% of studies.

Basic pharmacokinetics

Vd and CLtot were specified in 79% and 81% of studies, respect-
ively. Protein binding or serum albumin was mentioned in 27%
of studies.

CRRT clearance

The most popular method of CRRT was CVVH, which
accounted for 41% of studies. CVVHD and CVVHDF were
used in 16% and 24% of studies respectively. Other modalities
of CRRT included continuous arterio-venous haemofiltration
(CAVH; 4%), continuous arterio-venous haemodialysis,
(CAVHD; 12%) and high-volume haemofiltration (HVHF;
1.3%). A combination of two of the above techniques was used
in the remaining CRRT studies.

CVVH

Pre- or post-dilution mode was specified in 58% of studies. Sc

was calculated in 63% of studies. The ultrafiltration rate was
noted in 91% of studies. Where predilution was used, specifica-
tion of blood flow rate (Qd) and haematocrit (HCT) (to calculate
plasma flow rate) was mentioned in 80% and 6%, respectively
(Figure 4).

CVVHD

Dialysate rate and Sd were specified in 67% and 42% of studies,
respectively.

CVVHDF

Sc/Sd and effluent rate (QfþQd) were specified in 67% and 89%
of studies.

Discussion

Our systematic review of the literature indicates that a large pro-
portion of studies of antibiotic dosing in critically ill patients

Anti
bio

tic

M
od

e o
f C

RRT
Age

M
em

br
an

e/S
A

UF/ef
flu

en
t/d

ial
ys

ate
 ra

te

Dos
e r

ec
om

men
da

tio
n

CL tot

S c/
S d V d

CL CRRT

Sev
eri

ty 
of

 il
lne

ss 
sc

or
e

Res
idu

al 
ren

al 
fu

nc
tio

n

W
eig

ht

Hep
ati

c f
un

cti
on

PB(%
)/a

lbu
min

Bloo
d f

low
 ra

te 
(m

L/m
in)

Spe
cif

ied
 ta

rg
et 

co
nc

n

Hae
moto

cri
t

Com
ple

te 
da

tas
et

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f 
st

ud
ie

s

80

90

100

Percentage of studies
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receiving CRRT do not report key information necessary to
devise a rational dosing regimen or to determine the applica-
bility of the findings to the reader’s patients. In fact, none of the
studies analysed specified the full dataset.

There are certain basic pharmacokinetic parameters such as
Vd and CLtot that are fundamental requirements for all drug
dosing. However, these were only specified in 79% and 81% of
studies, respectively.

The mode and dose of CRRT are highly variable, but are
important determinants for antibiotics normally cleared by the
kidneys. It is therefore necessary to estimate CRRT clearance in
each individual or, at the very least, know whether the mode and
dose of CRRT used in a study approximates to the mode and
dose being given to the patient. A small but significant pro-
portion of studies omitted even basic information such as ultra-
filtrate/dialysate rate (Figure 3).

CVVH was the most common modality used in the studies
analysed, but only 58% of studies specified the method of repla-
cing ultrafiltrate (Figure 4). Given the disparity that can arise in
drug clearance between pre- and post-dilution CVVH, specifica-
tion of pre-dilution where used, with calculation of an appropri-
ate correction factor using blood flow rate (Qb) and replacement
fluid rate (Qrep) is essential. One can argue that in most patients
Qrep will only vary by a small fraction of the blood flow rate
(Qb) and therefore changes will probably not significantly affect
overall CRRT clearance. Similarly, using haematocrit to estimate
plasma flow rate as opposed to blood flow rate (as drug is essen-
tially cleared from plasma), should likewise not significantly
impact on overall clearance provided consistency exists between
studies. However, both these parameters are easily measured and
should therefore be included for study accuracy.

It is important to know Sc or Sd if one is to estimate drug
clearance in an individual patient (Figure 2). If these data are
lacking (12protein binding) can be used as a surrogate74 as
protein binding is the principal determinant of Sc and Sd. Only
78% of studies gave Sc or Sd. Of those that did not, none
measured protein binding.

The importance of specifying all these parameters is illus-
trated by two studies of meropenem pharmacokinetics during
CVVH.16,27 Patients were comparable demographically (age,
weight and severity of illness). However, the use of different
membranes (polyacrylonitrile compared with polysulfone) may
have resulted in different Sc values (0.63+0.252 compared with
1.09+0.10). In combination with differing ultrafiltrate rates
(25–30 mL/min compared with 45.8+6.2 mL/min) this resulted
in vastly different CRRT clearances between the two studies
(17.2 mL/min compared with 49.7+8.3 mL/min), and conse-
quently very different dose recommendations for similar patients
(500 mg twice daily compared with 1 g three times a day of
meropenem).

Non-CRRT clearance may make a major contribution to total
drug clearance and can be difficult to quantitatively assess. The
two main routes of drug elimination are renal and hepatic. Only
74% of studies qualified renal excretion to any degree, and the
majority only qualitatively. Hepatic clearance is much more dif-
ficult to assess, but we believe some mention of hepatic impair-
ment, if it exists, should be specified. This may be qualitative in
specifying a degree of liver impairment (for example the pres-
ence or absence of cirrhosis) or semi-quantitative such as serum
bilirubin or a measure of hepatic perfusion with indocyanine
green clearance. Renal elimination is to a large extent deter-
mined by glomerular filtration rate, with contributions from
tubular secretion and reabsorption, but the ability to upregulate
clearance is relatively limited. Consequently, hepatic clearance
in the presence of renal failure can become the predominant
modality of drug elimination in certain cases.15 For example,
non-renal (hepatic) clearance of meropenem has been shown to
increase from 20% of total elimination to .50% in patients with
a creatinine clearance rate of ,30 mL/min.75

Most studies suggested a dose regimen based on study data.
Where one was not advocated, levels and further studies were
suggested in the majority. Optimal bacterial killing is related to
pharmacokinetic targets, which are in turn related to MIC. Thus
to determine whether these dose regimens and modifications are
appropriate it is necessary to know what pharmacokinetic end-
point was targeted and that endpoint should be referenced to
MIC. However, this only occurred in 8% of studies.

We believe patient demographic data should be reported to
allow the reader to judge whether the findings can be applied to
his/her patient. Patient age was included in the dataset as it has
significant effects on native renal and hepatic clearance causing
in vivo drug clearance variations of 20%–40%,76 as well as
effecting changes in total body water, plasma protein binding
and Vd.77 Similarly, weight variation can have significant effects
on volume of distribution, and some studies specified Vd only in
absolute volume, which needs to be corrected for patient weight
for comparison. In addition, studies of the optimal intensity of
CRRT reference the CRRT dose to weight.78 – 80 Finally we
looked for an indication of severity of illness for comparison
between ICU populations. Critical illness may have significant
pharmacokinetic effects per se, and clearance alterations and
increases in the Vd of aminoglycoside, b-lactam and carbapenem
antibiotics in critically ill septic patients have been reported.81 – 86

Although unproved, this seems unlikely to be an all-or-nothing
phenomenon but is related to the severity of illness.

Our discussion has focused on the data required for dose cal-
culation from first principles. While we believe this is the ideal
method of prescription, many clinicians will choose to use dose
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adjustment equations (Table 2). As can be seen from Table 2 the
dose adjustment equations require many of the parameters dis-
cussed above such as CLCRRT and CLnon-CRRT, Sc and CRRT dose.

A third alternative is a ‘best guess’ technique whereby one
could identify studies using the antibiotic in question which
have similar patient demographics, modality and dose of CRRT,
and then use the advocated dosing regimen of these studies if
patients and practice are sufficiently similar to that used in the
prescriber’s unit. Again, this would require specification of most
of the parameters in our dataset.

Conclusions

We have presented a set of criteria we think necessary to calcu-
late appropriate doses of antibiotics in septic patients receiving
CRRT, from first principles. None of the studies of pharmacoki-
netic data examined presented the full range that we specified.
Clearly some parameters are of greater importance in calculating
clearance than others. As non-renal indications for haemofiltra-
tion and haemodialysis continue to expand with the concept of
blood purification, the use of these parameters in calculating
CRRT drug clearance in patients with both impaired and normal
hepato-renal function will increasingly become an important
issue. We hope our dataset will be a useful guide when deciding
which parameters are worthy of inclusion.
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